

315. Bascom, R. 1991. Differential responsiveness to irritant mixtures: Possible mechanisms. Environmental Research Facility, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine.

small amounts of xenobiotics applied as part of a therapeutic program.84 Cholinergic hyperresponsiveness has been noted in some cases of asthma and chronic obstructive lung disease, vasculitis, arrhythmia, and vascular spasm, which would be a type of denervation neural sensitization response. Hyperresponsiveness of the autonomic nerve may be congenital or acquired but fit with Gunn's814 model of denervation hypersensitivity, which would render the entire bronchopulmonary organ hypersensitive after an injury. The whole bronchial tree appears to become supersensitive after the initial damage occurs, rendering the individual to be more sensitive to inhaled irritants, foods, and chemicals. At times, only one branch of the nerve is injured because it could be due to the NVE/NOAC hypothesis described before.

Page 306

inappropriately because of environmental overload. Additionally, the plexus can be augmented. Then they function abnormally, yielding alterations in the dynamics of homeostasis.

A denervation hypersensitivity (Chapter 2 of Reversibility of Chronic Degenerative Disease and Hypersensitivity: Regulating Mechanisms of Chemical Sensitivity) condition either by newly splayed out nerve growth (regeneration of neurons) or damaged nerves occurs with solvent or traumatic injury. As described by Gunn,279 the whole organ supplied by the damaged peripheral sensory and dorsal root nerve (esophagus, stomach, small, or large intestine) and its autonomic nerve can become super responsive to autonomic discharges and the effects of neurotransmitters like noradrenaline or acetylcholine. In addition to autonomic discharge, the vanilloid peptidergics that trigger pain from the peripheral dermal tissue are also involved.